

DATALOGIC - VISION SENSOR DATAVS2 AOR

DATAVS2-06DEAOR

Vision Sensor, 6mm lens, ADV Object recognition, Red LED

- 360° pattern recognition
- 8 different controls
- Memory for up to 20 different inspections
- 4 outputs


Product description

DataVS2 is a series of Vision sensors for flexible solutions for machine applications.

The sensor is complete with optics, red LED lighting and electronics in a compact housing. The parameters in the sensor are set via PC through Ethernet communication. The software comes with the sensor and is developed to lead the user step by step through parameter setting. DataVS2 is available in three different versions with different control instruments.

Advanced Object recognition AOR - Has a control instrument for 360° pattern recognition.

Logic functions for that are connected between different control instruments and outputs such as: AND, OR, NOT, NAND, NOR etc.

Technical data

Supply voltage	24 V DC ±10 %
Ripple	1Vpp max. with lighting 2Vpp without lighting
Current consumption	100 mA at 24 VDC (without lighting)
Output type	4 PNP
Output current	100 mA max.
Resolution	640x480 (VGA)
Network interface	M12 4-pole Ethernet 10/100 Mbs
Interface external lighting	Strobe signal (24 V PNP N.O)
Frame rate	60 fps

optics	integrated (6 mm/8 mm/12 mm/16 mm)
Indication	4 LED
Connection	M12 8-pole A-coded M12 4-pole D-coded
IP-class	IP50
Encapsulation material	Aluminium alloy/ABS
Weight	125 g
Working temperature	-10 to +50 °C
Storage temperature	-25 to +70 °C

Control instruments

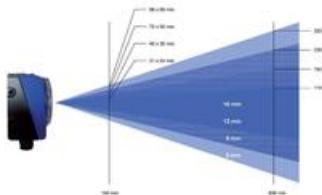
The Advanced Object Recognition (AOR) module integrates the important functions of the following:

Advanced Object Recognition (AOR)
M12 Fiber Optic
Image sensor
Image processing

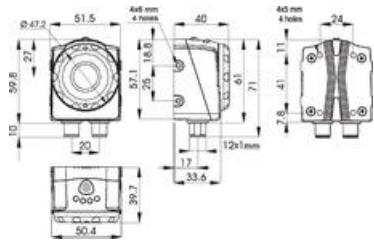
Image sensor
Image processing
of the single code
M12 fiber optic

Image sensor
Image processing
of the single code
M12 fiber optic

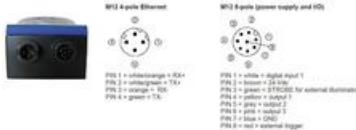
360° Pattern match


Control	Function	Applications	Image
Pattern Match	Search for a sample within a specified range	<ul style="list-style-type: none"> Packaging: check of logo Installation: product-orientation Automation of post: stamp control 	
Contour Match	Control of form	<ul style="list-style-type: none"> Metal working: integrity check Foodstuffs: control of form 	
Position	Control of limit position of the object	<ul style="list-style-type: none"> Bottling: level control Foodstuffs: control of label position 	
Width	Measures the object's width	<ul style="list-style-type: none"> Installation: control of plastic parts Woodworking industry: measurement of branch thickness 	

Counting	Counts number of objects along a line	<ul style="list-style-type: none"> Electronics: counting components Pharmaceutical industry: Counting units 	
Contrast	Calculation of contrast	<ul style="list-style-type: none"> Foodstuffs: checking presence of date and consignment label Metal working: Check of laser marking 	
Brightness	Calculation of luminance	<ul style="list-style-type: none"> Bottling: checking presence of cap Packaging: counting objects 	


Read field

Read field


Working distance (mm)	Read field (Width x Height) in mm			
	DATAVS2-16-DE-xxx	DATAVS2-12-DE-xxx	DATAVS2-08-DE-xxx	DATAVS2-06-DE-xxx
50	-	17 x 12	25 x 20	42 x 30
80	-	25 x 20	40 x 30	60 x 41
110	-	33 x 25	55 x 40	80 x 55
140	31 x 24	45 x 35	70 x 50	98 x 69
170	39 x 29	53 x 38	85 x 60	118 x 83
200	46 x 34	60 x 50	100 x 70	138 x 92
300	70 x 53	90 x 65	145 x 103	201 x 140
400	94 x 71	121 x 82	186 x 132	265 x 189
500	118 x 89	150 x 110	236 x 167	330 x 232
600	143 x 107	185 x 130	282 x 232	385 x 270

Dimensions

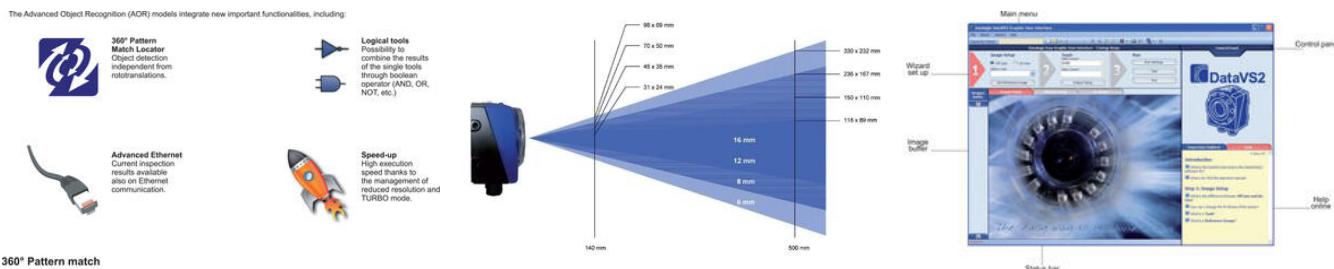
Connection

Order number

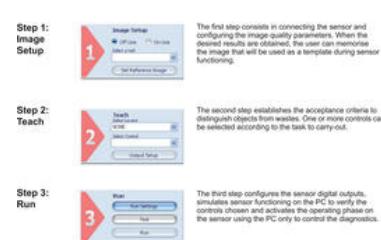
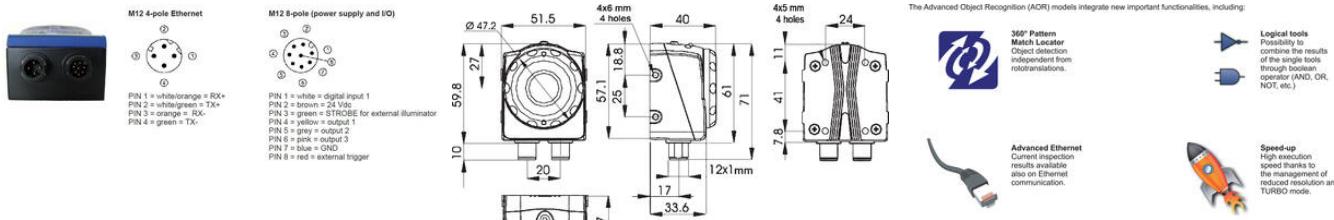
Order number	Description	Output
DATAVS2-06DEAOR	6 mm lens, AOR	4 outputs
DATAVS2-08DEAOR	8 mm lens, AOR	4 outputs
DATAVS2-12DEAOR	12 mm lens, AOR	4 outputs
DATAVS2-16DEAOR	16 mm lens, AOR	4 outputs
DATAVSCVRJ45D03	Ethernet cable 3m	

Download

Data sheet [Download](#)


Manual [Download](#)

Specifications

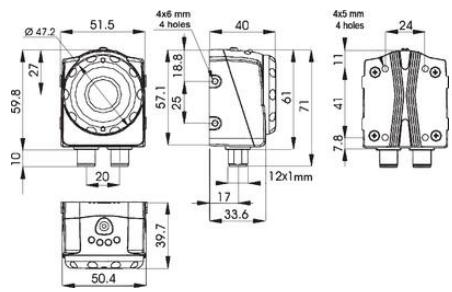


Frame Rate	60
Interface	Ethernet 10/100 Mbs (4-pole M12 -connector)
IP Class	IP50
Optics	6mm integrated lens
Output current max	0.1
Power consumption max	0.1
Resolution	640x480 (VGA)
Temperature range from	-10
Temperature range to	50
Voltage DC max	24

Voltage Tolerance

10%

360° Pattern match

The first step consists in connecting the sensor and configuring the image-quality parameters. When the desired results are obtained, the user can memorize the image that will be used as a template during sensor functioning.


The second step establishes the acceptance criteria to distinguish objects from wastes. One or more controls can be selected according to the task to carry out.

The third step configures the sensor digital outputs, simulates sensor functioning on the PC to verify the controls chosen and activates the operating phase on the sensor using the PC only to control the diagnostics.

The first step consists in connecting the sensor and configuring the image-quality parameters. When the desired results are obtained, the user can memorize the image that will be used as a template during sensor functioning.

The second step establishes the acceptance criteria to distinguish objects from wastes. One or more controls can be selected according to the task to carry out.

The third step configures the sensor digital outputs, simulates sensor functioning on the PC to verify the controls chosen and activates the operating phase on the sensor using the PC only to control the diagnostics.

